Compression Porometer

Description

The pore structure characteristics of products experiencing considerable stress during service could be appreciably different from those evaluated in the laboratory. This award winning instrument provides a unique opportunity for evaluating the component under true service conditions.

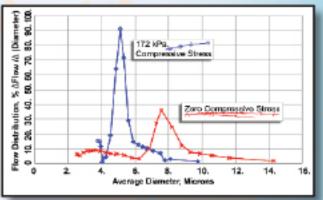
Principle of Operation

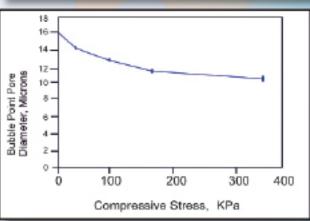
A fully wetted sample sandwiched between two porous and rigid plates is placed in the sample chamber. The plates are much more porous than the sample. Compressive stress is applied on the plates. Gas pressure behind the sample is increased. When the pressure is sufficiently high, the largest pore is emptied and gas starts to flow. With increase in pressure, smaller pores are emptied and the flow rate increases through the sample. The flow rate and pressure are measured using wet and dry samples. These data are used to calculate the effects of compressive stress on pore size and pore distribution. The pore size is obtained from differential pressure.

 $D = 4 \gamma \cos \theta / p$

D= pore diameter

γ= surface tension of liquid


θ= contact angle of liquid


p= differential gas pressure

The Compression Porometer ,thus, characterizes porous materials under conditions of their

actual use.

Features

- Measures effects of compressive stress on the largest pore diameter (bubble point), the mean flow pore diameter, pore distribution, and perme ability.
- Fully Automated
- Windows based software for data aquisition, storage and reduction
- Compressive stress adjustable by the operator

Applications

The Automated Compression Porometer is designed to characterize the pore structure of a material under compression. Industries world-wide use the PMI Compression Porometer for R&D and quality control. Samples often tested include filter media, membranes, paper and battery separators. The instrument permits tests to be carried out under simulated true service conditions.

Industries: Automotive, Battery Separator, Filtration, Geotextiles, Textiles, Nonwovens, Paper, Fuel Cells

Specifications

Compressive Stress 0-1000 psi (0-7000 kPa)

Compressive Stress Accuracy

0.25% of full scale

Test Pressures

100, 200, and 500 psi instrument-versions 700, 1400, 3500 kPa instrument-versions

Pressure Accuracy

0.15 % of reading

Flow Rates

Up to 200 SPLM (standard liters per minute)

Pressure and Flow Resolution

1/20,000 of full scale (1 part in 20,000)

Sample Size

Standard: 0.25" to 2.5" diameter (up to 1.5" thick)

Standard: 5mm to 60mm diameter (up to 40 mm thick)

Others: Available

Other Products

Advanced Capillary Flow Porometer

Average Fiber Diameter Analyzer

Bubble Point Tester Capillary Flow Porometer

Capillary Condensation Flow Porometer

Complete Filter Cartridge Analyzer

Clamp-On Porometer

Compression Porometer

Custom Porometer

Cyclic Compression Porometer

Envelope Surface Area Analyzer

Filtration Media Analyzer

High Flow Porometer Integrity Analyzer In-Plane Porometer

Microflow Porometer

Nanopore Flow Porometer

QC Porometer

Diffusion Permeameter

Gas Permeameter

Liquid Permeameter

Vapor Permeameter

Water Vapor Transmission Analyzer

Liquid Extrusion Porosimeter

Mercury/Nonmercury Intrusion Porosimeter

Vacuapore

Water Intrusion Porosimeter (Aquapore)

BET Liquisorb
BET Sorptometer
Gas Pycnometer
Mercury Pycnometer

Also Available: Testing Services Consulting Services Short Courses

Porous Materials, Inc. 20 Dutch Mill Rd, Ithaca, NY 14850 USA

Tel: (607)-257-5544 Toll Free in USA & Canada: 1-800-TALK-PMI

Fax: (607) 257-5639 Email: info@pmiapp.com WWW.PMIAPP.COM

